Using Clustering Algorithms to Identify Subproblems in Design Processes
نویسنده
چکیده
Designers work in teams to design complex systems. They separate the design problem into subproblems and solve the smaller, more manageable subproblems. Because this affects the overall quality of their design, it is important to understand how teams decompose system design problems, which will ultimately enable future research on how to design better design processes. We studied teams of experts solving two different facility design problems. We developed a novel approach that combines qualitative and quantitative techniques. It records a team's discussion, identifies the design variables using qualitative coding techniques, and groups these variables into subproblems. A subproblem is a set of variables that are considered together. We evaluated four clustering algorithms that group the coded variables into subproblems. This paper discusses the data collection, the clustering algorithms, and the evaluation techniques. The the algorithms generated similar but not identical clusters, and no algorithm's clusters consistently out-performed the others on quantitative measures of cluster quality. The clusters do provide insights into the subproblems that the design team solved.
منابع مشابه
Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملImprovement of density-based clustering algorithm using modifying the density definitions and input parameter
Clustering is one of the main tasks in data mining, which means grouping similar samples. In general, there is a wide variety of clustering algorithms. One of these categories is density-based clustering. Various algorithms have been proposed for this method; one of the most widely used algorithms called DBSCAN. DBSCAN can identify clusters of different shapes in the dataset and automatically i...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملSimulated annealing and artificial immune system algorithms for cell formation with part family clustering
Cell formation problem (CFP) is one of the main problems in cellular manufacturing systems. Minimizing exceptional elements and voids is one of the common objectives in the CFP. The purpose of the present study is to propose a new model for cellular manufacturing systems to group parts and machines in dedicated cells using a part-machine incidence matrix to minimize the voids. After identifying...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کامل